1. Daniel J Buss, Natalie Reznikov, Marc D McKee
Attaching organic fibers to mineral: The case of the avian eggshell
iScience, 2023 https://doi.org/10.1016%2Fj.isci.2023.108425
2. Daniel J Buss, Katya Rechav, Natalie Reznikov, Marc D McKee
Mineral tessellation in mouse enthesis fibrocartilage, Achilles tendon, and Hyp calcifying enthesopathy: A shared 3D mineralization pattern
Bone, 2023 https://doi.org/10.1016/j.bone.2023.116818
3. McKee MD, Buss DJ, Reznikov N.
Mineral tessellation in bone and the stenciling principle for extracellular matrix mineralization
J Struct Biol, 2022, 214(1):107823 https://doi.org/10.1016/j.jsb.2021.107823
4. Reznikov N, Liang H, McKee MD, Piché N.
Mapping of trabecular bone anisotropy and volume fraction in 3D using µCT images of the human calcaneus
Am J Biol Anthrop, 2022 https://doi.org/10.1002/ajpa.24474
5. Buss DJ, Kroeger R, McKee MD, Reznikov N.
Hierarchical organization of bone in three dimensions: A twist of twists
J Struct Biol: X, 2022(6):100057 https://doi.org/10.1016/j.yjsbx.2021.100057
6. Alsheghri A*, Reznikov N*, Piché N, Gendron M, Tamimi Marino F, Song J.
Optimization of 3D network topology for bioinspired design of stiff and lightweight bone-like structures
Mat Sci Eng: C, 2021, 112010 https://doi.org/10.1016/j.msec.2021.112010 * equally contributing authors.
7. Reznikov N, Buss DJ, Provencher B, McKee MD, Piché N.
Deep learning and 3D imaging in structural biology. Review
J Struct Biol, 2020: 107598 (invited from conference selection, special issue) https://doi.org/10.1016/j.jsb.2020.107598
8. Buss DJ, Reznikov N, McKee MD.
Crossfibrillar mineral tessellation in normal and Hyp mouse bone as revealed by 3D FIB-SEM microscopy
J Struct Biol, 2020: 108603 https://doi.org/10.1016/j.jsb.2020.107603
9. Reznikov N, Hoac B, Buss DJ, Addison WN, Barros NMT, McKee MD.
Biological stenciling of mineralization in the skeleton: Local enzymatic removal of inhibitors in the extracellular matrix.
Bone, 2020 https://doi.org/10.1016/j.bone.2020.115447 (cover article)
10. Athanasiadou D, Jiang W, Reznikov N, Rodriguez-Navarro AB, Kroeger R, Bilton M, Nelea V, Hu Y, McKee MD.
Nanostructure of mouse otoconia
J Struct Biol, 2020, 210(2):107489. https://doi.org/10.1016/j.jsb.2020.107489
11. Reznikov N, Rechav K.
FIB-SEM dual-beam microscopy for three-dimensional ultrastructural imaging of skeletal tissues. Methodological insert in Comparative skeletal histology and paleohistology. Editors : A. de Ricqlès, L. Zylberberg, K. Padian and V. de Buffrénil
CRC Press (Francis and Taylor Group) (invited book chapter, in press). undefined
12. Reznikov N, Alsheghri A, Piche N, Gendron M, Morozova I, Sanchez Siles JM, Gonzalez-Quevedo D, Tamimi Marino I, Song J, Tamimi Marino F.
The topological blueprint of trabecular bone associates with skeletal pathology in humans
Bone Reports, 2020 12:100264. https://doi.org/10.1016/j.bonr.2020.100264
13. Reznikov N, Dagdeviren D, Tamimi Marino F, Glorieux F, Rauch F, Retrouvey JM.
Cone-beam computed tomography of Osteogenesis Imperfecta types III and IV: Three-dimensional evaluation of craniofacial features and upper airways
J Bone Miner Res Plus, 2019, 3(6): https://doi.org/10.1002/jbm4.10124
14. Autefage H, Allen F, Tang HM, Kallepitis C, Gentleman E, Reznikov N, Nitiputri K, Nommeots-Nomm A, O’Donnell MD, Lange C, Seidt BM, Kim TB, Lee PD, Pierce BF, Wagermaier W, Fratzl P, Goodship A, Jones JR, Blunn G, Stevens MM.
Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass.
Biomaterials, 2019, 209:152-162. https://doi.org/10.1016/j.biomaterials.2019.03.035
15. Ghouse S, Reznikov N, Boughton O, Babu S, Ng G, Blunn G, Cobb J, Stevens MM, Jeffers J.
The design and in vivo testing of a locally stiffness-matched porous scaffold
Applied Materials Today, 2019, 15:377-388. https://doi.org/10.1016/j.apmt.2019.02.017
16. Reznikov N, Boughton O, Ghouse S, Blunn G, Weston A, Collinson L, Jeffers J, Cobb J, Stevens M.
Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms
Biomaterials, 2019, 194: 183-194. https://doi.org/10.1016/j.biomaterials.2018.11.026
17. Reznikov N, Bilton M, Lari L, Stevens MM, Kroeger R.
Fractal-like hierarchical organization of bone begins at the atomic level
Science, 2018, 360: eaao2189. https://doi.org/10.1126/science.aao2189
18. Silvent J, Akiva A, Brumfeld V, Reznikov N, Rechav K, Yaniv K, Addadi L, Weiner S.
Embryogenic zebrafish skeleton development: high resolution micro-CT imaging for phenotype identification
PLoS ONE, 2017; 12(12): e0177731 https://doi.org/10.1371/journal.pone.0177731
19. Rowan S, Chang M-L, Reznikov N, Taylor A.
Disassembly of the lens fiber cell nucleus to create a clear lens: The p27 descent
Exper Eye Res, 2017; 156:72-78. https://doi.org/10.1016/j.exer.2016.02.011
20. Ben-Zvi Y*, Reznikov N*, Shahar R, Weiner S.
3D architecture of trabecular bone in the pig mandible and femur: Inter-trabecular angle distributions
Front Mater (Special Issue: Computed Tomography-Based Biomaterials), 2017 https://doi.org/10.3389/fmats.2017.00029
21. Reznikov N, Phillips C, Cooke M, Garbout A, Ahmed F, Stevens MM.
Functional adaptation of the calcaneus in historical foot binding
J Bone Miner Res, 2017, 32(9):1915-1925 https://doi.org/10.1002/jbmr.3185 (cover article, and received American Society for Bone and Mineral Research / Journal of Bone and Mineral Research Raisz-Drezner Award)
22. Kim E, Zwi-Dantsis L, Reznikov N, Hansel CS, Agarwal S, Stevens MM.
One-pot synthesis of multiple protein-encapsulated DNA flowers and their application in intracellular protein delivery
Adv Mater, 2017, 29:1701086 https://doi.org/10.1002/adma.201701086
23. Reznikov N, Steele JAM, Fratzl P, Stevens MM.
A materials science vision of extracellular matrix mineralization
Nature Reviews Mater, 2016:16041. https://doi.org/10.1038/natrevmats.2016.41
24. Reznikov N, Chase H, Ben Zvi Y, Tarle V, Singer M, Brumfeld V, Shahar R, Weiner S.
Intertrabecular angle: a new topological parameter of trabecular bone architecture in the human proximal femur
Acta Biomater, 2016; 44:65-72. https://doi.org/10.1016/j.actbio.2016.08.040
25. Reznikov N, Chase H, Brumfeld V, Shahar R, Weiner S.
The 3D Structure of the collagen fibril network in human trabecular bone: relation to trabecular organization
Bone, 2015; 71:189-195. https://doi.org/10.1016/j.bone.2014.10.017
26. Atkins A, Reznikov N, Ofer L, Masic A, Weiner S, Shahar R.
The three-dimensional structure of anosteocytic lamellated bone of fish
Acta Biomater, 2015; 13:311-323. https://doi.org/10.1016/j.actbio.2014.10.025
27. Reznikov N, Shahar R, Weiner S.
Bone hierarchical structure in three dimensions
Acta Biomater, 2014; 10:3815-3826. https://doi.org/10.1016/j.actbio.2014.05.024
28. Almany-Magal R, Reznikov N, Shahar R, Weiner S.
Three-dimensional structure of minipig fibrolamellar bone: adaptation to axial loading
J Struct Biol, 2014; 186:253-264. https://doi.org/10.1016/j.jsb.2014.03.007
29. Reznikov N, Shahar R, Weiner S.
Three-dimensional structure of human lamellar bone: the presence of two different materials and new insights into the hierarchical organization
Bone, 2014; 59:93-104. https://doi.org/10.1016/j.bone.2013.10.023
30. Reznikov N, Almany-Magal R, Shahar R, Weiner S.
Three-dimensional imaging of collagen fibril organization in rat circumferential lamellar bone using a dual beam electron microscope reveals ordered and disordered sub-lamellar structures
Bone, 2013; 52:676-683. https://doi.org/10.1016/j.bone.2012.10.034
31. Faingold A, Cohen S, Reznikov N, Wagner DH.
Osteonal lamellae elementary units: lamellar microstructure, curvature and mechanical properties
Acta Biomater, 2013; 9:5956-5962. https://doi.org/10.1016/j.actbio.2012.11.032
32. Reznikov N, Barkana I, Abed Y, Har-Zion G, Redlich M.
Measurement of friction forces between stainless steel wires and "reduced-friction" self-ligating brackets
Am J Orth Dent Orthop, 2010; 138:330-338. https://doi.org/10.1016/j.ajodo.2008.07.025
33. Reznikov N, Barkana I, Abed Y, Har-Zion G, Redlich M.
Influence of friction resistance on expression of superelastic properties of initial NiTi wires in "reduced friction" and conventional bracket systems
J Dent Biomech, 2010; 1:613142. http://dx.doi.org/10.4061/2010/613142